Publications
For citations statistics, see ADS or Google Scholar.
Papers with important contributions
| # 304 |
A novel approach to classification of ECG arrhythmia types with latent ODEs
Yan, A.; Sampson, M.; Melchior, P.
arXiv:2511.16933
|
| # 303 |
Transfer Learning Beyond the Standard Model
Krishnaraj, V.; Bayer, A.; Jespersen, C.; Melchior, P.
arXiv:2510.19168
|
| # 302 |
Dynamics of Learning: Generative Schedules from Latent ODEs
Sampson, M.; Melchior, P.
arXiv:2509.23052
|
| # 301 |
Reconstructing Quasar Spectra and Measuring the Ly$α$ Forest with SpenderQ
Hahn, C.; Gontcho, S.; Melchior, P. and 37 co-authors
arXiv:2506.18986
|
| # 300 |
Path-minimizing latent ODEs for improved extrapolation and inference
Sampson, M.; Melchior, P.
Machine Learning: Science and Technology, 2025, 6, 025047
|
| # 299 |
Spatially Resolved Galaxy–Dust Modeling with Coupled Data-driven Priors
Siegel, J.; Melchior, P.
The Astrophysical Journal, 2025, 986, 212
|
| # 298 |
A Deep-Learning Based Parameter Inversion Framework for Large-Scale Groundwater Models
Triplett, A.; Bennett, A.; Condon, L.; Melchior, P.; Maxwell, R.
Geophysical Research Letters, 2025, 52, e2024GL114285
|
| # 297 |
Inhomogeneous Dust Biases Photometric Redshifts and Stellar Masses for LSST
Hahn, C.; Melchior, P.
The Astrophysical Journal, 2025, 982, L44
|
| # 296 |
Disentangling transients and their host galaxies with scarlet2: A framework to forward model multi-epoch imaging
Ward, C.; Melchior, P. and 7 co-authors
Astronomy and Computing, 2025, 51, 100930
|
| # 295 |
Joint cosmic density reconstruction from photometric and spectroscopic samples
Horowitz, B.; Melchior, P.
Monthly Notices of the Royal Astronomical Society, 2025, 538, 2050
|
| # 294 |
A Deep-Learning Based Parameter Inversion Framework for Large-Scale Groundwater Models
Triplett, A.; Bennett, A.; Condon, L.; Melchior, P.; Maxwell, R.
ESS Open Archive eprints, 2025, 647, essoar.174312166
|
| # 293 |
The optical and infrared are connected
Jespersen, C.; Melchior, P.; Spergel, D.; Goulding, A.; Hahn, C.; Iyer, K.
arXiv:2503.03816
|
| # 292 |
Simulation-Based Inference For Parameter Estimation Of Complex Watershed Simulators
Hull, R.; Leonarduzzi, E.; De La Fuente, L.; Viet Tran, H.; Bennett, A.; Melchior, P. and 2 co-authors
Hydrology and Earth System Sciences, 2024, 28, 4685
|
| # 291 |
Score-matching neural networks for improved multi-band source separation
Sampson, M. L.; Melchior, P.; Ward, C.; Birmingham, S.
Astronomy and Computing, 2024, 49, 100875
|
| # 290 |
Spatio-Temporal Machine Learning for Regional to Continental Scale Terrestrial Hydrology
Bennett, A.; Tran, H.; De la Fuente, L.; Triplett, A.; Ma, Y.; Melchior, P. and 2 co-authors
Journal of Advances in Modeling Earth Systems, 2024, 16, e2023MS004095
|
| # 289 |
Cosmology with Galaxy Photometry Alone
Hahn, C.; Villaescusa-Navarro, F.; Melchior, P.; Teyssier, R.
The Astrophysical Journal, 2024, 966, L18
|
| # 288 |
Constraining Protoplanetary Disk Winds from Forbidden Line Profiles with Simulation-based Inference
Nemer, A.; Hahn, C.; Li, J.; Melchior, P.; Goodman, J.
The Astrophysical Journal, 2024, 965, 157
|
| # 287 |
Water Table Depth Estimates over the Contiguous United States Using a Random Forest Model
Ma, Y.; Leonarduzzi, E.; Defnet, A.; Melchior, P.; Condon, L.; Maxwell, R.
Ground Water, 2024, 62, 34
|
| # 286 |
PopSED: Population-level Inference for Galaxy Properties from Broadband Photometry with Neural Density Estimation
Li, J.; Melchior, P.; Hahn, C.; Huang, S.
The Astronomical Journal, 2024, 167, 16
|
| # 285 |
AESTRA: Deep Learning for Precise Radial Velocity Estimation in the Presence of Stellar Activity
Liang, Y.; Winn, J.; Melchior, P.
The Astronomical Journal, 2024, 167, 23
|
| # 284 |
Spatio-temporal machine learning for continental scale terrestrial hydrology
Bennett, A.; Tran, H.; Fuente, L.; Triplett, A.; Ma, Y.; Melchior, P. and 2 co-authors
ESS Open Archive eprints, 2023, 696, 69665283
|
| # 283 | |
| # 282 |
Outlier Detection in the DESI Bright Galaxy Survey
Liang, Y.; Melchior, P.; Hahn, C.; Shen, J.; Goulding, A.; Ward, C.
The Astrophysical Journal, 2023, 956, L6
|
| # 281 |
Beyond Ultra-diffuse Galaxies. I. Mass-Size Outliers among the Satellites of Milky Way Analogs
Li, J.; Greene, J.; Greco, J.; Huang, S.; Melchior, P. and 8 co-authors
The Astrophysical Journal, 2023, 955, 1
|
| # 280 |
Autoencoding Galaxy Spectra. I. Architecture
Melchior, P.; Liang, Y.; Hahn, C.; Goulding, A.
The Astronomical Journal, 2023, 166, 74
|
| # 279 |
Autoencoding Galaxy Spectra. II. Redshift Invariance and Outlier Detection
Liang, Y.; Melchior, P.; Lu, S.; Goulding, A.; Ward, C.
The Astronomical Journal, 2023, 166, 75
|
| # 278 |
Spotting Hallucinations in Inverse Problems with Data-Driven Priors
Sampson, M.; Melchior, P.
arXiv:2306.13272
|
| # 277 |
Lightweight starshade position sensing with convolutional neural networks and simulation-based inference
Chen, A.; Harness, A.; Melchior, P.
Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9, 025002
|
| # 276 |
Mangrove: Learning Galaxy Properties from Merger Trees
Jespersen, C.; Cranmer, M.; Melchior, P.; Ho, S.; Somerville, R.; Gabrielpillai, A.
The Astrophysical Journal, 2022, 941, 7
|
| # 275 |
Deblending Galaxies with Generative Adversarial Networks
Hemmati, S.; Huff, E.; Nayyeri, H.; Ferté, A.; Melchior, P. and 4 co-authors
The Astrophysical Journal, 2022, 941, 141
|
| # 274 |
Plausible Adversarial Attacks on Direct Parameter Inference Models in Astrophysics
Horowitz, B.; Melchior, P.
arXiv:2211.14788
|
| # 273 |
Accelerated Bayesian SED Modeling Using Amortized Neural Posterior Estimation
Hahn, C.; Melchior, P.
The Astrophysical Journal, 2022, 938, 11
|
| # 272 |
Graph neural network-based resource allocation strategies for multi-object spectroscopy
Wang, T.; Melchior, P.
Machine Learning: Science and Technology, 2022, 3, 015023
|
| # 271 |
A Physics-Informed, Machine Learning Emulator of a 2D Surface Water Model: What Temporal Networks and Simulation-Based Inference Can Help Us Learn about Hydrologic Processes
Maxwell, R.; Condon, L.; Melchior, P.
Water, 2021, 13, 3633
|
| # 270 |
The challenge of blending in large sky surveys
Melchior, P.; Joseph, R.; Sanchez, J.; MacCrann, N.; Gruen, D.
Nature Reviews Physics, 2021, 3, 712
|
| # 269 |
Joint survey processing: combined resampling and convolution for galaxy modelling and deblending
Joseph, R.; Melchior, P.; Moolekamp, F.
arXiv:2107.06984
|
| # 268 |
Unsupervised Resource Allocation with Graph Neural Networks
Cranmer, M.; Melchior, P.; Nord, B.
arXiv:2106.09761
|
| # 267 |
deep21: a deep learning method for 21 cm foreground removal
Makinen, T. Lucas; Lancaster, L.; Villaescusa-Navarro, F.; Melchior, P. and 3 co-authors
Journal of Cosmology and Astroparticle Physics, 2021, 2021, 081
|
| # 266 |
Dark Energy Survey Year 1 Results: Wide-field mass maps via forward fitting in harmonic space
Mawdsley, B.; Bacon, D.; Chang, C.; Melchior, P. and 63 co-authors
Monthly Notices of the Royal Astronomical Society, 2020, 493, 5662
|
| # 265 |
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
Lanusse, F.; Melchior, P.; Moolekamp, F.
arXiv:1912.03980
|
| # 264 |
Astrometry with the Wide-Field Infrared Space Telescope
WFIRST Astrometry Working Group; Sanderson, R.; Bellini, A.; Casertano, S.; Lu, J.; Melchior, P. and 12 co-authors
Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 044005
|
| # 263 |
Proximal Adam: Robust Adaptive Update Scheme for Constrained Optimization
Melchior, P.; Joseph, R.; Moolekamp, F.
arXiv:1910.10094
|
| # 262 |
Detecting galaxy-filament alignments in the Sloan Digital Sky Survey III
Chen, Y.; Ho, S.; Blazek, J.; He, S.; Mandelbaum, R.; Melchior, P. and 1 co-authors
Monthly Notices of the Royal Astronomical Society, 2019, 485, 2492
|
| # 261 |
Filling the gaps: Gaussian mixture models from noisy, truncated or incomplete samples
Melchior, P.; Goulding, A. D.
Astronomy and Computing, 2018, 25, 183
|
| # 260 |
SCARLET: Source separation in multi-band images by Constrained Matrix Factorization
Melchior, P. and 6 co-authors
Astronomy and Computing, 2018, 24, 129
|
| # 259 |
Dark Energy Survey Year 1 results: curved-sky weak lensing mass map
Chang, C.; Pujol, A.; Mawdsley, B.; Bacon, D.; Elvin-Poole, J.; Melchior, P. and 115 co-authors
Monthly Notices of the Royal Astronomical Society, 2018, 475, 3165
|
| # 258 |
In the Crosshair: Astrometric Exoplanet Detection with WFIRST's Diffraction Spikes
Melchior, P.; Spergel, D.; Lanz, A.
The Astronomical Journal, 2018, 155, 102
|
| # 257 |
Cosmological constraints from the convergence 1-point probability distribution
Patton, K.; Blazek, J.; Honscheid, K.; Huff, E.; Melchior, P. and 2 co-authors
Monthly Notices of the Royal Astronomical Society, 2017, 472, 439
|
| # 256 |
Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data
Melchior, P. and 80 co-authors
Monthly Notices of the Royal Astronomical Society, 2017, 469, 4899
|
| # 255 |
Block-Simultaneous Direction Method of Multipliers: A proximal primal-dual splitting algorithm for nonconvex problems with multiple constraints
Moolekamp, F.; Melchior, P.
arXiv:1708.09066
|
| # 254 |
Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter
Palmese, A.; Lahav, O.; Banerji, M.; Gruen, D.; Jouvel, S.; Melchior, P. and 63 co-authors
Monthly Notices of the Royal Astronomical Society, 2016, 463, 1486
|
| # 253 |
Crowdsourcing quality control for Dark Energy Survey images
Melchior, P. and 49 co-authors
Astronomy and Computing, 2016, 16, 99
|
| # 252 |
No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey
Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P. and 72 co-authors
Monthly Notices of the Royal Astronomical Society, 2016, 457, 786
|
| # 251 |
Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data
Melchior, P. and 91 co-authors
Monthly Notices of the Royal Astronomical Society, 2015, 449, 2219
|
| # 250 |
Hubble Space Telescope Combined Strong and Weak Lensing Analysis of the CLASH Sample: Mass and Magnification Models and Systematic Uncertainties
Zitrin, A.; Fabris, A.; Merten, J.; Melchior, P. and 22 co-authors
The Astrophysical Journal, 2015, 801, 44
|
| # 249 |
First measurement of gravitational lensing by cosmic voids in SDSS
Melchior, P.; Sutter, P. M.; Sheldon, E.; Krause, E.; Wandelt, B.
Monthly Notices of the Royal Astronomical Society, 2014, 440, 2922
|
| # 248 |
Density mapping with weak lensing and phase information
Szepietowski, R.; Bacon, D.; Dietrich, J.; Busha, M.; Wechsler, R.; Melchior, P.
Monthly Notices of the Royal Astronomical Society, 2014, 440, 2191
|
| # 247 |
Calibration biases in measurements of weak lensing
Bartelmann, M.; Viola, M.; Melchior, P.; Schäfer, B. M.
Astronomy and Astrophysics, 2012, 547, A98
|
| # 246 |
Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing
Melchior, P.; Viola, M.
Monthly Notices of the Royal Astronomical Society, 2012, 424, 2757
|
| # 245 |
Shear-flexion cross-talk in weak-lensing measurements
Viola, M.; Melchior, P.; Bartelmann, M.
Monthly Notices of the Royal Astronomical Society, 2012, 419, 2215
|
| # 244 |
Quantifying galaxy shapes: sérsiclets and beyond
Andrae, R.; Melchior, P.; Jahnke, K.
Monthly Notices of the Royal Astronomical Society, 2011, 417, 2465
|
| # 243 |
Weak gravitational lensing with DEIMOS
Melchior, P.; Viola, M.; Schäfer, B. M.; Bartelmann, M.
Monthly Notices of the Royal Astronomical Society, 2011, 412, 1552
|
| # 242 |
Parametrizing arbitrary galaxy morphologies: potentials and pitfalls
Andrae, R.; Jahnke, K.; Melchior, P.
Monthly Notices of the Royal Astronomical Society, 2011, 411, 385
|
| # 241 |
Biases in, and corrections to, KSB shear measurements
Viola, M.; Melchior, P.; Bartelmann, M.
Monthly Notices of the Royal Astronomical Society, 2011, 410, 2156
|
| # 240 | |
| # 239 |
Soft clustering analysis of galaxy morphologies: a worked example with SDSS
Andrae, R.; Melchior, P.; Bartelmann, M.
Astronomy and Astrophysics, 2010, 522, A21
|
| # 238 |
Limitations on shapelet-based weak-lensing measurements
Melchior, P.; Böhnert, A.; Lombardi, M.; Bartelmann, M.
Astronomy and Astrophysics, 2010, 510, A75
|
| # 237 |
Deconvolution with shapelets
Melchior, P.; Andrae, R.; Maturi, M.; Bartelmann, M.
Astronomy and Astrophysics, 2009, 493, 727
|
| # 236 |
Realistic simulations of gravitational lensing by galaxy clusters: extracting arc parameters from mock DUNE images
Meneghetti, M.; Melchior, P. and 7 co-authors
Astronomy and Astrophysics, 2008, 482, 403
|
| # 235 |
Reliable shapelet image analysis
Melchior, P.; Meneghetti, M.; Bartelmann, M.
Astronomy and Astrophysics, 2007, 463, 1215
|
Papers with minor contributions
Theses
- Shapelets for gravitational lensing and galaxy morphology studies
PhD thesis in physics, Ruprecht-Karls-Universität Heidelberg
defense: June 8, 2010 - Shapelets Reloaded & Flexion Revolutions
diploma thesis in physics, Ruprecht-Karls-Universität Heidelberg
handed in: June 1, 2006